hyperspherical coordinates - определение. Что такое hyperspherical coordinates
DICLIB.COM
Языковые инструменты на ИИ
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое hyperspherical coordinates - определение

GENERALIZATION OF THE ORDINARY SPHERE TO SPACES OF ARBITRARY DIMENSION
Hyperspherical coordinates; Hyper sphere; Area of the n-sphere; 4-sphere; Volume of the n-sphere; Four-dimensional sphere; Circle (topology); Hypersphere; 7-sphere; 0-sphere; N sphere; N-spheres; 5-sphere; 6-sphere; 8-sphere; 9-sphere; 10-sphere; N-Sphere; N‑sphere; Hyperspheres; Nsphere; D-sphere; Unit hypersphere; Hyperspherical; Hyperspherical coordinate system; Octahedral sphere; S^n; 4d Sphere
  • A set of points drawn from a uniformly distribution on the surface of a unit 2-sphere, generated using Marsaglia's algorithm.
  • 0,0,0,1}} have an infinite radius (= straight line).
  • ''n''}} dimensions.
  • 2-sphere wireframe as an [[orthogonal projection]]

Homogeneous coordinates         
MATHEMATICS
Homogenous coordinates; Homogeneous coordinate; Homogeneous co-ordinates; Homogeneous coordinate system; Projective coordinates; Homogeneous Coordinates; Homogenous coordinate
In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work ,August Ferdinand Möbius: Der barycentrische Calcul, Verlag von Johann Ambrosius Barth, Leipzig, 1827.
Lemaître coordinates         
PARTICULAR SET OF COORDINATES FOR THE SCHWARZSCHILD METRIC
Lemaitre coordinates; Lemaitre metric; Lemaître Coordinates; Lemaître metric
Lemaître coordinates are a particular set of coordinates for the Schwarzschild metric—a spherically symmetric solution to the Einstein field equations in vacuum—introduced by Georges Lemaître in 1932. English translation: See also:  … Changing from Schwarzschild to Lemaître coordinates removes the coordinate singularity at the Schwarzschild radius.
6-sphere coordinates         
3D COORDINATE SYSTEM CREATED BY INVERTING THE CARTESIAN COORDINATES ACROSS THE UNIT SPHERE
6-Sphere Coordinates; Six-sphere coordinates; Six-Sphere Coordinates
In mathematics, 6-sphere coordinates are a coordinate system for three-dimensional space obtained by inverting the 3D Cartesian coordinates across the unit 2-sphere x^2+y^2+z^2=1. They are so named because the loci where one coordinate is constant form spheres tangent to the origin from one of six sides (depending on which coordinate is held constant and whether its value is positive or negative).

Википедия

N-sphere

In mathematics, an n-sphere or a hypersphere is a topological space that is homeomorphic to a standard n-sphere, which is the set of points in (n + 1)-dimensional Euclidean space that are situated at a constant distance r from a fixed point, called the center. It is the generalization of an ordinary sphere in the ordinary three-dimensional space. The "radius" of a sphere is the constant distance of its points to the center. When the sphere has unit radius, it is usual to call it the unit n-sphere or simply the n-sphere for brevity. In terms of the standard norm, the n-sphere is defined as

S n = { x R n + 1 : x = 1 } , {\displaystyle S^{n}=\left\{x\in \mathbb {R} ^{n+1}:\left\|x\right\|=1\right\},}

and an n-sphere of radius r can be defined as

S n ( r ) = { x R n + 1 : x = r } . {\displaystyle S^{n}(r)=\left\{x\in \mathbb {R} ^{n+1}:\left\|x\right\|=r\right\}.}

The dimension of n-sphere is n, and must not be confused with the dimension (n + 1) of the Euclidean space in which it is naturally embedded. An n-sphere is the surface or boundary of an (n + 1)-dimensional ball.

In particular:

  • the pair of points at the ends of a (one-dimensional) line segment is a 0-sphere,
  • a circle, which is the one-dimensional circumference of a (two-dimensional) disk, is a 1-sphere,
  • the two-dimensional surface of a three-dimensional ball is a 2-sphere, often simply called a sphere,
  • the three-dimensional boundary of a (four-dimensional) 4-ball is a 3-sphere,
  • the (n – 1)-dimensional boundary of a (n-dimensional) n-ball is an (n – 1)-sphere.

For n ≥ 2, the n-spheres that are differential manifolds can be characterized (up to a diffeomorphism) as the simply connected n-dimensional manifolds of constant, positive curvature. The n-spheres admit several other topological descriptions: for example, they can be constructed by gluing two n-dimensional Euclidean spaces together, by identifying the boundary of an n-cube with a point, or (inductively) by forming the suspension of an (n − 1)-sphere. The 1-sphere is the 1-manifold that is a circle, which is not simply connected. The 0-sphere is the 0-manifold, which is not even connected, consisting of two points.